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Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow
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Based on a relaxation equation for the second rank alignment tensor characterizing the molecular orientation
in liquid crystals, we report on a number of symmetry-breaking transient states and simple periodic and
irregular, chaotic out-of-plane orbits under steady flow. Both an intermittency route and a period-doubling
route to chaos are found for this five-dimensional dynamic system in a certain range of parameters~shear rate,
tumbling parameter at isotropic-nematic coexistence, and reduced temperature!. A link to the corresponding
rheochaotic states, present in complex fluids, is made.
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A nematic liquid crystal~LC! subjected to a steady she
flow can either go to a stationary flow aligned state or
spond with a time dependent molecular orientation depe
ing on the magnitude of the tumbling parameterl @1–3#.
Both flow alignment and time dependent orientation, f
quently referred to as ‘‘tumbling’’ behavior are observed
thermotropic, lyotropic, and polymeric LC’s@4# In the tum-
bling regime, however, the dynamics are more complex t
the Ericksen-Leslie director theory can describe. The sec
alignment tensor is needed to characterize the molecular
entation. Detailed theoretical studies@5#, based on the solu
tions of a generalized Fokker-Planck equation@6,7#, revealed
that in addition to the tumbling motion, wagging and kaya
ing types of motions, as well as combinations thereof oc
Recently, also chaotic motions were inferred from a mom
approximation to the Fokker-Planck equation leading to
65-dimensional dynamical system@8# for uniaxial particles.
While we consider uniaxial particles in this note, one m
notice that for long triaxial ellipsoidal non-Brownian pa
ticles chaotic behavior had also been predicted in Ref.@9#.
Here we report on our discovery@10# that a closed nonlinea
relaxation equation for the alignment tensor, being equi
lent to a five-dimensional dynamical system and stron
related to the full Fokker-Planck equation, leads to a cha
behavior for particular values of the tumbling parameter a
in certain ranges of the shear rate. Both the frequency d
bling route, as in Ref.@8#, and the intermittency route to
chaos are found for the simpler system. Due to the coup
between the alignment and stress tensor~a relationship is
given below!, one may attempt to model the time depend
and also chaotic rheological behavior seen in the recent
periments on micellar materials@11#, dense lamellar phase
@12#, and dense suspensions@13#—and discussed in mor
general theoretical considerations on rheochaos@14#—by
variants of the dynamic system to be characterized in
paper. An illustrative example is given in Ref.@15#, where
equations similar to the one to be discussed below were u
to describe the effect of~nonchaotic! shear thickening.
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The quantity F, specified below, is the derivative of
Landau-de Gennes free energyF with respect to the align-
ment tensor, it contains terms of first, second, and third or
in a. The equation stated here was first derived within
framework of irreversible thermodynamics@16#, where the
relaxation time coefficientsta.0 andtap are considered as
phenomenological parameters. It had been shown in R
@6,17# that ta andtap are proportional to the Ericksen-Lesli
viscosity coefficientsg1 and g2, respectively. The basic
equation used here can also be derived, within certain
proximations, from a Fokker-Planck equation for the orie
tational distributions function that contains a torque asso
ated with the molecular field proportional toa @6,7,18#. Then
ta and the ratio2tap/ta can be related to the rotationa
diffusion coefficent and to a nonsphericity parameter ass
ated with the shape of a particle. Equation~1! is applicable to
both the isotropic and the nematic phases. Limiting ca
that follow from this equation are the pretransitional beha
ior of the flow birefringence@19,20# in the isotropic phase
@F(a) is approximated by its term linear ina] and the
Ericksen-Leslie theory in the uniaxial nematic phase. In
latter case, the Ericksen-Leslie viscosity coefficientsg1 and
g2 are proportional to ta and tap, respectively, and
l52g2 /g1. Equation~1! has been applied to the study o
the influence of a shear flow on the isotropic-nematic ph
transition@19,20#, and discussed intensively in recent, in pa
ticular, experimental works, see e.g., Refs.@3,4# and refer-
ences cited therein.
©2002 The American Physical Society02-1
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SK stands for the Maier-Saupe order parameter at coe
ence. The pseudo-critical value where the term linear ina, in
the expression forF, vanishes is denoted byT* ~or c* ).
One hasT* ,TK ~or c* .cK). The quantitydK512T* /TK
~or dK512cK /c* ) is typically of the order of 1/10–1/100
It sets a reference scale for temperature~concentration! dif-
ferences. A dimensionless relative temperature~concentra-
tion! variable is defined byq5(12T* /T)/dK or q5(1
2c/c* )/dK . Then the Landau-de Gennes free energy
sumes a simple form involving just the one model parame
q, viz., 2F5qa222I (3)1a4. Here I (3)5A6 tr(a•a•a) is
the third-order scalar invariant. The scaled equilibrium alig
ment in the nematic phase, forq,1, is aeq5aeq(q)5@3
1(928q)1/2#/4. Clearly,aeq51 at q51, corresponding to
the equilibrium coexistence state point. The nematic and
isotropic phases are metastable in the intervals 1,q,9/8
and 0,q,1. Times are expressed in units of the relaxti
time tK5ta/dK of the alignment in the isotropic phase at t
coexistence state or, equivalently, are related to the visco
coefficient g1 of the nematic phase at coexistence bytK

5g1 /(15nkBTKSK
2dK), where n denotes number density

Shear rates are in units oftK
21 . Then Eq.~1! is equivalent to

ȧ052F0 , ȧ152F11ġa2 , ȧ352F31 1
2 ġa4 , ~2!

ȧ252F22ġa12
ġlkA3

2
, ȧ452F42 1

2 ġa3 . ~3!

The derivatives of the potential function with respect to t
components of the alignment tensor are given
F05q0a013(a1

21a2
2)2(3/2)(a3

21a4
2), F15q1a1

2(3/2)A3(a3
22a4

2), F25q1a223A3a3a4 , F35q0a3

23A3(a1a31a2a4), and F45q0a423A3(a2a32a1a4),
where the abbreviationq i[q1(9i 23)a012a2 ( i 50,1) is
used. The dynamical system~2!,~3! contains three contro
parameters two of which are determined by the state p
and the material chosen, viz, q and lk5
22A3tap/(A5SKta), which is the value of the tumbling pa
rameter at phase coexistence. The actual tumbling param
at a state point withq,1 is leq5lk /aeq. The third control
parameter is the shear rateġ.

The componentsa0,1,2 are linked with symmetry of the
plane Couette flow. According to Eq.~3!, a3,4 remain zero
when they are zero initially. It seemed sufficient@19–22# to
study the smaller system~2! involving three components jus
as one deals with three components of shear stress te
viz., the shear stress and two normal stress differences. E
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tion ~2! with a3,450 decribes correctly the flow aligned sta
as well as the tumbling and wagging behavior of the f
system for certain ranges of control parameters. In this pa
we report on the symmetry-breaking solutions witha3,4
Þ0, which exist in some specific ranges of the control p
rameters. These solutions are associated with kayaking t
of motions, but also rather complex and chaotic orbits
found.

Results are presented forq50, for 0.8<lK<1.8 ~corre-
sponding to 0.53<leq<1.2) and 0.1<ġ<10. To obtain an
overview of the possible orbits, the system~2!, ~3! was inte-
grated numerically using a fourth-order Runge-Kutta meth
with fixed time step, starting from at least 10 random init
values ofa0 , . . . ,a4 for each combination of parameter
When the system had reached an asymptotic state~limit
cycle or attractor!, the domain of stability of this state in th
parameter space was obtained by changing one parametġ
or lk) in small steps and continuing the integration.

The following types of orbits, cf. Fig. 1, have been foun
tumbling (T): in-plane tumbling with a3,450; wagging
(W): in-plane wagging witha3,450; aligning (A): in-plane
flow alignment witha3,450; kayaking tumbling~KT!: a pe-
riodic orbit with a3,4Þ0, where the projection of the
director—the principal axis ofa associated with the larges
eigenvalue—onto the shear plane describes a tumbling
tion; kayaking wagging~KW!: a periodic orbit witha3,4

FIG. 1. Solution phase diagram of the steady and transient s
of system~2!, ~3! for q50. The solid line is the border between th
in-plane orbitsT, W, and A; the dashed line and the dotted lin
delimit the regions where the out-of-plane orbits KT and KW, r

spectively, exist. Hereġ, leq, andlk denote dimensionless shea
rate, tumbling parameter of the Ericksen-Leslie theory, andlk

5leqaeq @see text part close to Eq.~2!#.
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Þ0, where the projection of the director onto the shear pl
describes a wagging motion, and complex (C): periodic or-
bits composed of sequences of KT and KW motion as wel
aperiodic and chaotic orbits. The first three orbitsT, W, and
A were identified in Ref.@21#. The kayaking orbits@5# KT
and KW are distinguished from each other according to R
@23#. Because Eqs.~2!,~3! are invariant under the transforma
tion a3,4→2a3,4, two equivalent kayaking states exist.

A solution phase diagram of the various in-plane and o
of-plane states is drawn forq50 in Fig. 1. Though a de-
tailed discussion about stability, coexisting, and transit
states will have to be given elsewhere, we focus our atten
to the regionC, i.e.,lK'1.2–1.3 andġ'3.6–4.2. The sys-
tem shows rather complicated dynamical behavior in reg
C of the solution diagram, where neither one of the sim
periodic states nor an aligning state is stable. The spe
orbit depends on the parameters and the initial conditio
We are able to classify four categories of attractors:

~1! Periodic KT/KW composite state denoted b
KTn/Wm: a state composed ofn periods kayaking tumbling
and m periods kayaking wagging, wheren50.5,1,1.5, . . .
andm51,2,3, etc. For higher shear rates, the KW sequen
tend to be highly damped;

~2! Irregular KT or KT/KW state: a chaotic orbit consis
ing of either irregular KT oscillation or sequences of KT-ty
oscillation, irregularly interrupted by unsteady KW oscill
tions. The largest Lyapunov exponent is of order 0.01–0

~3! Intermittent KT state: At the threshold to the irregul
state for lowlk andġ, one has a large number of KT period
between the interruptions.

~4! Period-doubling KT states: Generally, the system
hibits a lot of more or less complicated periodic KTn/KWm
states which are stable only within very small parameter
tervals. The higher the values ofn andm, the smaller is the
stability interval. For certain values of the parameters, m
than one KTn/KWm state exists. Between the stability r
gions of the periodic states, the behavior is chaotic, indica
by a positive largest Lyapunov exponentL1. In many parts
of the spectra, the chaotic regions are highly fragmen
which coincides with the observation of a large amount
periodic orbits spreading over the whole range of shear ra

We observe that the route to chaos for increasing sh
rates depends on the parameterlK: For lk<1.25, one finds
intermittent behavior forġ at the lower bound of region C
For lK51.26, the KT state becomes metastable atġ
53.7016, where it coexists with a periodic KT3/KW1 o
KT3.5/KW1 composite state, and chaos emerges either
rectly from the KT state atġ53.7025 or from one of the
above KT/KW composite states atġ53.7023. For lk
51.27 and greater, chaos emerges via a period-doub
route. When the flow-aligned~A! phase is approached from
the complex~C! regime, the oscillation period grows infi
nitely high, in contrast to the behavior at the KW→A tran-
sition, where the amplitude of the oscillation gets damp
But also in the latter case, the startup transients are mo
lated with a large-period oscillation. In order to determi
the Lyapunov exponents, Eqs.~2!,~3! and their linearizations
were integrated from random initial variables and pertur
tion vectors using a fourth-order Runge-Kutta method. T
04070
e

s

f.

t-

n
n

n
e
fic
s.

es

5.

-

-

e

d

d,
f
s.
ar

i-

g

.
u-

-
e

integration time~shear strain! wasġt550 000, the transients
up to ġt51000 were ignored. If one estimates a kayakin
tumbling period to be of orderġt'50, the integration time
corresponds to 1000 characteristic oscillation periods. T
parallelepiped of perturbations was reorthonormalized ev
20 integration steps, and the temporary Lyapunov expon
L i(t) were recorded periodically every 1000 shear str
units. The last value atġt550 000 was taken as the resu
Despite the limited exactness of their determination,
qualitative behavior of the largest Lyapunov exponent (L1
.0 or L150) has been verified by testing the periodicity
the orbits at the selected shear rates.

A selected Lyapunov spectrum forlK51.275 is shown in
Fig. 2. The error of the Lyapunov exponentL1 was esti-
mated to bedL1560.002566%. The occurrence of tran

FIG. 2. The two largest Lyapunov exponentsL1 , L2 ~solid and
dashed line! of system~2!, ~3! for q50, lk51.275 as a function of
ġ. The inset shows the beginning of the chaotic region in grea
detail.

FIG. 3. Feigenbaum diagram of the period-doubling route
system~2!, ~3! for q50, lk51.275, andġ53.74–3.75. Plot of the
Poincare´ mapa4(t i) for i 51 –82 ata350 vs the ‘‘control param-
eter’’ ġ, the dimensionless shear rate. The inset shows the s
stress vs time for two fixed shear rates,ġ53.778 ~thin line!, and
ġ53.776 ~thick line!, where the latter case exemplifies transie
rheochaotic behavior. All quantities in dimensionless units.
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sient chaos for asymptotically periodic trajectories som
times makes the analysis time consuming. Long transie
chaotic behavior was found within the integration time on
8 of 351 times for the particular set of parameters. For t
selected value forlk , the system evolves towards chaos v
successive period-doubling steps. At the first step, only
period of a0 , . . . ,a2 is doubled. Then, with increasingġ,
the periods of all components are doubled. A bifurcation d
gram, cf. Fig. 3, was constructed by computing the Poinc´
map ata350 for ġ varied from 3.74 to 3.75 with step siz
531025. The componenta4 at the timest i wherea3 crosses
zero is plotted in the diagram against the shear rate.
corresponding diagram fora0 is very similar. Since the com
plex states always contain KT sequences witha3,4 changing
their sign twice every oscillation period, the hyperplanea3

50 was taken as the Poincare´ surface of section. The system
was integrated up toġt56000 and the transients forġt
,3000 were skipped. As initial condition for the first valu
of ġ, a uniaxiala with equilibrium order parameter and th
director given by the spherical anglesf50, u55/18p was
used. For the remaining points, the integration was contin
with increasedġ using the end values of the preceding in
gration as initials. This was done to ensure that the sys
remains in the same oscillation state as long as possible
states (a3,4) and (2a3,4) are chosen by the system dependi
on the initial conditions and lead to different Poincare´ maps.

The resulting bifurcation plot has a striking similarity
the Feigenbaum diagram of the logistic map,xn115rxn(1
2xn). The distance between successive period-doub
steps in Fig. 3 shrinks rapidly with the order of the period
in the Feigenbaum diagram. Even the chaotic region exhi
the same type of banded structure and has windows of p
odic behavior. However, atġ'3.748, the chaotic band en
larges abruptly. The reason for this behavior is the equ
lence of the statesa3,4 and 2a3,4: both attractors were
ds
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separated forġ,3.748 and mix forġ.3.748. To test the
similarity of the period-doubling routes, the valuesġn where
a period of order 2n emerges and the valueġ` for the begin-
ning of chaos were calculated forn51 –5 Like for the logis-
tic map, theġn scale according to a lawġn5ġ`2Cd2n for
n@1, with the Feigenbaum constantd. A nonlinear fit yields
C5(0.019067)31025 and d54.8360.02, The value
agrees qualitatively with that for the logistic map.d
54.669 . . . , and asimilar value had been reported in Re
@8#. The Poincare´ map in the chaotic regime forġ53.7455 is
not shown here, but the plot ofa0(tn11) versusa0(tn) has a
single quadratic maximum, indicating the universal behav
So the presence of the period-doubling route and the qu
tative agreement of the value of the Feigenbaum constad
receives an explanation. However, a side structure in the
growing with increasing shear rate prevents an oversim
fied view of a full analogy.
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